Formation of Mangala Fossa, the source of the Mangala Valles, Mars: Morphological development as a result of volcano-cryosphere interactions

نویسندگان

  • Harald J. Leask
  • Lionel Wilson
  • Karl L. Mitchell
چکیده

[1] The morphology of the Mangala Fossa graben forming the source of the Mangala Valles implies that two episodes of graben subsidence took place, each induced by lateral dike intrusion from Arsia Mons. Quantitative modeling suggests that graben boundary faults breaching the cryosphere provided pathways for water release from an underlying aquifer at a peak rate of 10 m s . In the first event, the graben subsided by 200 m, and water carrying a thin ice layer filled the graben, overflowing after 2.5 hours, mainly at a low point on the north rim. This captured the water flux, eroding a gap in the north wall which, with an erosion rate of 100 mm s 1 and a duration of 1 month, was 250 m deep by the end of water release. Erosion of the graben floor also took place, at 20 mm s , lowering it by 50 m. Subsequently, heat from the cooling dike melted cryosphere ice, causing a further 150 m of subsidence on compaction. In the second event, with a similar duration and peak discharge, the graben again subsided by 200 m and filled with ice-covered water until overflow through the gap began at a water depth of 350 m. The gap was eroded down by a further 400 m, and the floor was eroded by a further 50 m. Finally, heat from the second dike sublimed cryosphere ice, lowering the floor by 100 m. In places, combined erosion and subsidence of the graben floor exposed 200 m of the first dike.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Episodes of floods in Mangala Valles, Mars, from the analysis of HRSC, MOC and THEMIS images

The Mangala Valles is a 900-km long outflow channel system in the highlands adjacent to the southeastern flank of the Tharsis bulge. This work was intended to answer the following two questions unresolved in previous studies: (1) Was there only one source of water (Mangala Fossa at the valley head which is one of the Medusae Fossae troughs or graben) or were other sources also involved in the v...

متن کامل

MANGALA VALLES, MARS: ASSESSMENT OF EARLY STAGES OF FLOODING AND DOWNSTREAM FLOOD EVOLUTION GIL J. GHATAN and JAMES W. HEAD III

The Mangala Valles system is an ~900 km fluvially carved channel system located southwest of the Tharsis rise and is unique among the martian outflow channels in that it heads at a linear fracture within the crust as opposed to a collapsed region of chaos as is the case with the circum-Chryse channels. Mangala Valles is confinedwithin abroad, north–south trendingdepression, andbegins as a singl...

متن کامل

Evidence for remnants of ancient ice-rich deposits: Mangala Valles outflow channel, Mars

Outflow channels represent one of the most dramatic manifestations of the presence, during the Late HesperianAmazonian periods, of huge quantities of liquid water on the surface of Mars. Features associated with outflow channels show evidence for catastrophic water release from the subsurface, extensive overland flow and erosion, ponding in low-lying regions and ultimate return to other water r...

متن کامل

Heat transfer in volcano–ice interactions on Mars: synthesis of environments and implications for processes and landforms

We review new advances in volcano–ice interactions on Mars and focus additional attention on (1) recent analyses of the mechanisms of penetration of the cryosphere by dikes and sills; (2) documentation of the glacial origin of huge fan-shaped deposits on the northwest margins of the Tharis Montes and evidence for abundant volcano–ice interactions during the later Amazonian period of volcanic ed...

متن کامل

MRO’s HiRISE COVERAGE OF FLUVIAL LANDFORMS ON MARS DURING ITS PRIMARY

Introduction: The Mars Reconnaissance Orbiter's High-Resolution Imaging Science Experiment completed its primary science phase (lasting one Mars year) in November 2008. By the end of the primary science phase, the HiRISE camera completed 9549 observations for a total of approximately 8 Terabytes of data. These observations cover an area close to 938,000 km 2 or approximately 0.6% of the surface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007